硕 导 个 人 简 介
u 个人简介(范例)
魏正元,副教授,统计学硕士生导师(学硕/专硕)。
1994.09-1998.07,,湖北大学,数学教育专业,学士学位;
2000.09-2003.07,厦门大学, 概率论与数理统计专业, 硕士学位;
2006.09-2009.06,复旦大学, 概率论与数理统计专业, 博士学位。
2003.07-今,重庆理工大学理学院教师。
在国内外重要刊物如应用概率统计,Journal of Statistical Planning and Inference, Statistics and Probability Letters, Communications in Statistics-Theory and Methods,Applied Mathematics and Computation,应用概率统计等发表论文40余篇。
u 研究领域(范例)
金融风险管理;金融数据处理; 金融衍生产品定价;随机过程统计;概率分布理论;统计计算; 统计过程控制
u 承担的主要项目(范例)
[1]高频金融数据的建模与统计分析,重庆市教委科学技术研究项目,2010.12-2011.12,2万,主持。
[2]超高频金融数据的波动率估计与跳检验-基于已实现区块极差多幂变差,重庆市自然科学基金一般项目,2012.09-2016.09, 5万,主持。
[3]超高频金融数据的波动率研究及应用,重庆市教委科学技术研究项目,3万,2013.01-2016.06.主持。
[4]基于全面质量管理的高校教学质量评价研究,重庆市教委高教研究项目,0.5万元,2012.09-2014.09,主持。
[5]偏微分方程的不连续Legendre小波数值解法研究,重庆市自然科学基金一般项目,2013.09-2016.09, 3万,参与。
[6]对流扩散方程的小波算法以及应用研究,重庆市教委科学技术研究项目,2013.09-2015.09, 2万元,参与。
[7] 基于小波智能迭代算法的对流扩散方程约束最优控制研究,重庆市自然科学基金面上项目,2019.07-2022.06, 10万,参与。
[8]正交多项式、时空调和多项式的概率刻画及应用,重庆市自然科学基金,2020.07-2023.06,10万,主持。
[9] 编制园区落地项目运营分析报告,企业委托, 2020.12-2021.05,14.9万,主持。
[10] 2019/2020/2020年沙坪坝区科技发展只能报告,政府部门委托, 2020.01-2022.04, 19.5万,主持。
[11] 2023非学历教培行业质量发展报告,企业委托, 10万, 2023-02-2023-12,主持。
u 代表性成果(范例)
[1] Zhengyuan wei, XinshengZhang(2009),Covariance matrix inequalities for functions of Beta random variables, Statisticsand Probability Letters (SCI收录:429DB,ISSN: 0167-7152), 79 (7): 873-879.
[2] Zhengyuanwei,Xinsheng Zhang(2008),Second order exponential differential operator and generalized Hermitepolynomials, Applied Mathematics and Computation(SCI收录:383PY, ISSN: 0096-3063), 206 (2):781-787.
[3] Zhengyuanwei,Xinsheng Zhang(2008),A matrix version of Chernoff inequality, Statistics and ProbabilityLetters (SCI收录:355DF, ISSN: 0167-7152),78 (13): 1823-1825.
[4] Zhengyuanwei,Xinsheng Zhang and Taifu Li(2010), On Stein’s identity,Chernoffinequality and orthogonal polynomials, Communications inStatistics-Theory and Methods (SCI收录号:624RZ), 2010,39 (14): 2573-2593.
[5] Taifu Li, Sheng Hu, Zhengyuan Wei, Zhiqiang Liao(2013),A Framework for Diagnosingthe Out-of-Control Signals in Multivariate Process Using Optimized SupportVector Machines, Mathematical Problems in Engineering, vol. 2013,Article ID 494626, 9 pages, 2013.
[6] GuangyingLiu, Zhengyuan wei, Xinsheng Zhang(2013), Asymptotic properties for multipower variationof semimartingales and Gaussian integral processes with jumps,Journal of StatisticalPlanning and Inference,143(8), 1307–1319.
[7] Xiaoyang Zheng, Zhengyuan Wei, Xiaozeng Xu (2014). LegendreWavelet Neural Networks for Power Amplifier Linearization, AppliedMathematics, 2014, 5, 3249-3255.
[8] Xiaoyang Zheng, Zhengyuan Wei (2015). Discontinuous LegendreWavelet Galerkin Method for One-Dimensional Advection-Diffusion Equation,Applied Mathematics, 6, 1581-1591.
[9] Zhengyuan Wei, Yunfeng Luo, Juan Li and Xiaoyang Zheng (2016).A Note on Wallis' Formula, Journal of Advances in AppliedMathematics, 1(2), 91-138, April 2016 Published Online January 2016 in Isaac Scientific Publishing (http:// www. isaac -scientific.org).
[10] Xiaoyang Zheng, Zhengyuan Wei (2016). Estimates ofApproximation Error by Legendre Wavelet, Applied Mathematics, 7,694-700. (http:// www. isaac -scientific.org)
[11] Xiaoyang Zheng, Zhengyuan Wei, Jiangping He (2016). DiscontinuousLegendre Wavelet Galerkin Method for Solving Lane-Emden Type Equation, Journalof Advances in Applied Mathematics, 1(1): 29-43.
[12] Xiaoyang Zheng, Zhengyuan Wei (2016). Discontinuous Legendrewavelet Galerkin method for reaction diffusion equation. InternationalJournal of computer Mathematics (SCI源刊),94(9): 1-35.
[13] Xiaoyang Zheng, Yong Fu and ZhengyuanWei (2016). Legendre Wavelet and Particle Swarm Optimization for PowerAmplifier Linearization, international journal of circuits, systems andsignal processing(EI检索), Volume 10: 397-402.
[14] Xiaoyang Zheng,Hong Su, Zhengyuan Wei, New method for indoor positioning by usingwireless communication base stations, Electronics Letters(SCI源刊), 2017, 53(20): 1385-1386.
[15]Zhengyuan Wei, Juan Li, Xiaoyang Zheng (2017). A Probabilistic Approach to Wallis’ Formula. Communications in Statistics — Theory and Methods (SCI源刊). 46 (13):6491-6496. (入藏号: WOS000398151200018, ISSN: 0361-0926; IDS号: EQ5VN)
[16] Zheng, Xiaoyang; Su,Hong; Wei, Zhengyuan; Hu, Shunren(2017), New method for indoorpositioning by using wireless communication base stations, ELECTRONICS LETTERS,2017.9.28, 53(20): 1385~1386 ; SCIE.
[17]Xiaoyang Zheng, Zhengyuan Wei, Discontinuous Legendre Wavelet Element Method for Reaction-Diffusion Equation from Mathematical Chemistry, International Journal of Computational Methods, 2019,16(7):1850113 (SCI源刊).
[18]Zhengyuan Wei, Suping Li, Qiao Li, Yucan Yu & Xiaoyang Zheng (2020) Gamma mixture of generalized error distribution, Communications in Statistics - Theory and Methods, 49:19, 4819-4833.(入藏号:000470362500001, IDS号:NA5VF)
[19] Zhengyuan Wei, Tiankui Peng, Xiaoya Zhou (2020),The alpha-beta-gamma skew normal distribution and its application,Open journal of statistics,10, 1057-1071.
[20]Zhengyuan Wei, Xiaoya Zhou, Jinrong Jiang. A Note on Surface Integrals of Vector Fields, Open Access Library Journal ,2021, 8: e7934. https:// doi.org /10.4236 /oalib. 1107934 .
[21]魏正元,李时银.有多个跳跃源的信用风险欧式期权定价公式.厦门大学学报(自然科学版),2003,04:439-443.
[22]魏正元.Black-Scholes期权定价公式推广.数学的实践与认识,2005,06:35-40.
[23]魏正元.广义交换期权定价.数学的实践与认识,2005,09:34-37.
[24]魏正元.利用Lebesgue-Stieljes积分证明Jordan公式.数学的实践与认识,2005,10:181-183.
[25]魏正元.跳跃—扩散型欧式加权几何平均价格亚式期权定价.应用概率统计,2007,03:238-246.
[26]魏正元,高红霞,邹婷.关于随机阶的几个结果.数学的实践与认识,2010,09:187-189.
[27]魏正元,高红霞.多跳-扩散模型与脆弱欧式期权定价. 应用概率统计,2011,03:232-240.
[28]魏正元.欧式加权几何平均价格亚式期权定价. 重庆工学院学报,2004,01:44-46.
[29]颜克胜,李太福,魏正元,苏盈盈,姚立忠.融合PLS监督特征提取和虚假最近邻点的数据分类特征选择[J]. 计算机与应用化学,2012,07:817-821.
[30]胡胜,李太福,魏正元,颜克胜.基于核主元分析的神经网络控制图模式识别[J].计算机应用, 2012,09:2520-2522+2526.
[31]李太福,胡胜,魏正元,韩亚军.基于遗传优化的PCA-SVM控制图模式识别[J].计算机应用研究,2012,12:4538-4541+4545.
[32]魏正元,霍艳,李文.高频数据下基于VaR模型的我国金融市场研究.重庆理工大学学报(自然科学),2014,08:126-131.
[33]魏正元,张鑫,赵瑜.上证380高频指数数据已实现GARCH(1,2)模型的风险测量[J].重庆理工大学学报(自然科学),2015,05:137-141.
[34]魏正元,赵瑜,张鑫.跳稳健积分波动率估计量的研究.重庆理工大学学报(自然科学),2015,06:134-143.
[35] 魏正元,李娟,罗云峰.基于EGARCH-GPD模型的沪深300指数的VaR度量.重庆理工大学学报(自然科学),2016,05:119-124.
[36] 霍艳,魏正元,李文. 五参效用函数. 数学的实践与认识,2016, 20:273-279.
[37] 魏正元,罗云峰,余德英,王爱法. 基于已实现NGARCH模型的上证50指数的风险度量.重庆理工大学学报(自然科学)2017,05, 180-185.
[38]魏正元,余徳英,李素平. 已实现GARCH-GED模型的研究及应用. 重庆理工大学学报(自然科学),2018,32(03):273-278.
[39] 魏正元,薛玲,谢挺. 基于似然比检验的VaR回测研究. 统计与决策, 2019 (08): 26-29.
[40]魏正元,余愈灿. 基于Edgeworth展开的已实现波动率校正[J]. 现代工业经济和信息化, 2020,10(04):12-15. [41]魏正元,王雪,杨丹,杨书悦. 基于EGARCH和Cornish-Fisher展开的VaR度量方法[J]. 重庆工商大学学报(自然科学版),2021,38(02):64-68. |
[42] 魏正元,彭天奎,周晓娅.Alpha偏幂正态分布及其应用.应用概率统计, 2022,38(05):647-658.
联系方式(范例)
电话:023-62561976;E-mail:weizy@cqut.edu.cn